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New aspects of turbulence are uncovered if one considers the flow motion from
the perspective of a fluid particle (known as the Lagrangian approach) rather
than in terms of a velocity field (the Eulerian viewpoint). Using a new experi-
mental technique, based on the scattering of ultrasound, we have obtained a
direct measurement of particle velocities, resolved at all scales, in a fully turbu-
lent flow. We find that the Lagrangian velocity autocorrelation function and the
Lagrangian time spectrum are in agreement with the Kolmogorov K41 pheno-
menology. Intermittency corrections are observed and we give a measurement
of the Lagrangian structure function exponents. They are more intermittent
than the corresponding Eulerian exponents. We also propose a novel analysis of
intermittency in turbulence: our measurement enables us to study it from a
dynamical point of view. We thus analyze the Lagrangian velocity fluctuations
in the framework of random walks. We find experimentally that the elementary
steps in the ‘‘walk’’ have random uncorrelated directions but a magnitude that
displays extremely long-range correlations in time. Theoretically, we study a
Langevin equation that incorporates these features and we show that the result-
ing dynamics accounts for the observed one-point and two-point statistical
properties of the Lagrangian velocity fluctuations. Our approach connects the
intermittent statistical nature of turbulence to the dynamics of the flow.
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1. INTRODUCTION

Traditional experimental studies of velocity fluctuations in homogeneous,
isotropic, three-dimensional turbulence rely on velocimetry measurements



at a fixed point in space. A local velocity probe yields time traces of the
velocity fluctuations which are then related to spatial velocity profiles using
the Taylor hypothesis. In this case, the flow is analyzed in terms of the
Eulerian velocity field uF(x, t). Several features are now firmly established
about the Eulerian velocity field: (1) the Kolmogorov k−5/3 spectrum, the
associate ‘‘4/5th’’ law, and the presence of intermittency corrections. In the
Lagrangian framework, the flow is described by the motion of individual
fluid particles; the velocity vF(aF, t) as a function of time of a fluid particle
located at position aF at initial time. It is a natural framework for mixing
and transport problems. It has also been shown theoretically in the passive
scalar problem that intermittency is strongly connected to the particular
properties of Lagrangian trajectories. (2, 3) However Lagrangian measure-
ments are challenging because they involve the tracking of particle trajec-
tories: enough time resolution, both at small and large scales, is required to
describe the turbulent fluctuations.

We have developed a new experimental method, based on sonar tech-
niques, (4) in order to study in a laboratory experiment the velocity of tracer
particles across the inertial range of time scales. We derive from our
measurements the Lagrangian velocity auto-correlation function and
time spectrum which are found to be in very good agreement with the
Kolmogorov K41 picture of turbulence. We also compute higher order
statistics and firmly establish the existence of intermittency in Lagrangian
coordinates. However, we take a further step. In the Eulerian framework,
intermittency is attributed to the inhomogeneity in space of the turbulent
activity and often analyzed in terms of ad hoc multiplicative cascade
models. Although very successful at describing the data, these models have
failed to connect intermittency with the dynamical equations that govern
the motion of the fluid. Since our measurements give access to the individ-
ual motion of fluid particles, we study intermittency from a dynamical
point of view. We show that the observed anomalous scaling in the
Lagrangian velocity increments traces back to the existence of long-time
correlations in the particle accelerations, i.e., the hydrodynamic forces that
drive the particle motion. We believe that these long-time correlations are
of fundamental importance both for the understanding of turbulence and
for stochastic models that are used to describe particle dynamics in turbu-
lent flows.

2. EXPERIMENTAL SETUP

In order to study the dynamics of Lagrangian tracers, we need to
resolve their velocity fluctuations across a wide range of scales. To this end,
we use a confined flow with no mean advection, so that fluid particles
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remain for long times inside a given measurement volume. A water flow of
the von Kármán swirling type (5–8) is generated inside a cylinder by counter-
rotation at a variable frequency 1/2 of two discs with radius R=9.5 cm,
fitted with eight blades of height 0.5 cm and set 18 cm apart—Fig. 1(a).
The large scale flow is axisymmetric and the fluctuations in its center
approximate the conditions of local homogeneous and isotropic turbulence.
The Taylor microscale lT in the flow varies from 600 to 900 microns,
larger than the diameter (250 mm) of the neutrally buoyant tracer particle
(density of 1.06)—see Table I. However, the particle size is larger than the
Kolmogorov dissipative scale g, so that a frequency cut-off is expected in
the way the solid particles follow the fluid motion. We will see that the
particles act as Lagrangian tracers for times longer than 1 ms.

The tracking of the tracer particles is achieved using a new acoustic
technique, based on the principle of a ‘‘continuous Doppler sonar.’’ The
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Fig. 1. (a) Left: set-up and example of a particle trajectory, 206 ms (=9.2TL) long, where TL

is the integral time scale. Right: acoustics; the emitter is located at (E) and two arrays of
receivers at (x) and (y) detect the sound scattered by the particle when it moves inside the
shaded volume. (b) Example of detected velocity variations (one component shown).
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Table I. Main Charcateristics of the Turbulence Produced in the

von Kármán Swirling Flow a

W E urms lT TL yg

[Hz] [W/kg] [m/s] [mm] [ms] [ms]

4 8 0.48 650 46.7 0.35
7.2 25 0.98 880 22.4 0.20

11 72 1.58 920 14.7 0.12

a W is the frequency of counter-rotation of the driving discs; E is the flow power consumption
per unite mass; urms is the standard deviation of the velocity fluctuations in the center of the
flow; lT is the Taylore microscale; TL the integral time of the Lagrangian motion (measured
from the autocorrelation of the Lagrangian velocity), and yg is the Kolmogorov dissipative
time scale.

flow volume is continuously insonified with a monochromatic ultrasound,
which is then scattered by the tracer particle. (4, 9) This scattered sound is
detected by two transducer arrays, which yield a measurement of both
the particle position, by direct triangulation, and of its velocity, from the
Doppler shift. Indeed, for an incoming sound with frequency f0, the
scattered sound at the receiver has frequency f(t)=f0+k · v(t), where v(t)
is the velocity of the tracer particle and k is the scattering wave vector. The
flow is insonified at 2.5 MHz, with the transducers located at the flow wall.
The receiver arrays are placed at 45 degrees on each side of the emission
direction. The measurement region is the intersection of the emission and
detection cones, as shown in Fig. 1; the volume defined in this manner
is neither axisymmetric nor isotropic and this introduces a bias that must
be taken into account in the averaging process. (10) The scattered acoustic
signal is recorded on an array of transducers and the frequency modulation
is extracted numerically, using a high-resolution parametric method. (4, 11, 12)

The particles are tracked as long as they stay confined insided the mea-
surement volume, i.e., between one and ten TL, the Lagrangian integral
time scale (computed from the Lagrangian velocity autocorrelation func-
tion). Figure 1(c) gives an example of the time variation of one component
of a particle’s velocity. 4000 such events are analyzed, i.e., 1.9 × 106 data
points sampled at 6.5 kHz.

3. ‘‘K41’’ SECOND ORDER QUANTITIES

Let us first consider the Lagrangian velocity auto-correlation function:

RL(y)=
Ov(t) v(t+y)Pt

Ov2P
. (1)
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Fig. 2. Autocorrelation function and spectrum of the Lagrangain velocity at Rl=740.
(a) Velocity autocorrelation function. A best exponential fit is rL

v (y)=1.03e−45.7y. It is shown,
slightly shifted for clarity, as the linear curve in the inset. (b) Corresponding power spectrum;
the upper curve dashed is the Lorentzian function calculated from the exponential fit of the
auto-correlation function (shifted for clarity). The inset shows the power spectrum com-
pensated by an w−2 scaling: the plateau corresponds to the region of Kolmogorov scaling.

We observe—Fig. 2a—that it has a slow decrease which can be modeled by
an exponential function rL

v (y) ’ e−y/TL. This expression defines an integral
Lagrangian time scale TL=22 ms. For comparison, the period of rotation
of the discs is 140 ms and the sweeping period of the blades is 17 ms. The
measured Lagrangian time scale thus appears as a time characteristic of the
energy injection. The exponential reproduces extremely well the variation
of the auto-correlation function, from about 5yg at small scales to 4TL—see
inset of Fig. 2a. These limits coincide with the upper and lower resolutions
of the technique, so that we observe an exponential decay over the entire
range of our measurement. Note that, as the variance of the acceleration
must be finite (13) there has to be some lower cut-off to this behavior, at
times of order yg. These observations extend and confirm previous numer-
ical and experimental studies at moderate Reynolds numbers. (14–16) The
exponential decay of the Lagrangian velocity auto-correlation is a key
feature of stochastic models of dispersion since it appears as a linear drift
term in a Langevin model of particle dynamics. (17, 18)

We then turn to the Lagrangian spectrum, i.e., the power spectrum in
time of velocity fluctuations of the tracer particle. From the exponential fit
shown in Fig. 2b, and by computing the Fourier transform of the expo-
nential decay of the auto-correlation function, one gets:

EL
fit(w)=

u2
rmsTL

1+(TLw)2 . (2)
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We observe a clear range of power law scaling EL(w) 3 w−2—see the
compensated plot inset of Fig. 2b. This is in agreement with a Kolmogorov
K41 picture in which the spectral density at a frequency w is a dimensional
function of w and E: EL(w) 3 E w−2. To our knowledge, this is the first time
that this scaling is directly observed at high Reynolds number and in a
laboratory experiment, although it has been reported in oceanic studies (19)

and in lower Reynolds number direct numerical simulations. (20) Departure
from the Kolmogorov behavior is observed at low frequencies in agreement
with the exponential decay of the auto-correlation. At high frequencies, the
spectrum deviates from the Lorentzian form due to the particle response
(inertia). A typical response time for the particle is of the order of d/urms,
where d is its diameter; for the 250 mm particles used here this corresponds
to a frequency cut-off of about one kiloHertz, as observed in Fig. 2b.

Staying with second order statistical quantities, we now consider the
second order structure function of the velocity increment

DL
2 (y)=O(v(t+y) − v(t))2Pt=O(Dyv)2P. (3)

(We emphasize that the Lagrangian increments are made over time, and
not in space as in the Eulerian domain). The second order stucture function
is related to the velocity auto-correlation function by DL

2 (y)=2u2
rms(1−RL(y)):

at small times one observes the trivial scaling DL
2 (y) 3 y2 and at large times

DL
2 (y) saturates at 2u2

rms (as v(t) and v(t+y) become uncorrelated). In
between these two limits, one expects an inertial range of scales with a
Kolmogorov-like scaling

DL
2 (y)=C0Ey, (4)

where C0 is a ‘‘universal’’ constant. Such a behavior is consistent with
dimensional analysis and with an w−2 scaling range in the velocity power
spectrum. Figure 3 shows DL

2 (y)/Ey; a plateau with a constant C0 is not
observed. At Rl ’ 1000, the function reaches a maximum at 20yg, for
which C0 ’ 2.9. This value is in agreement with the estimation C0=4 ± 2
in ref. 21 and in the range of values (between 3 and 7) used in stochastic
models for particle dispersion. (22) However, in our set of measurements
between Rl=100 and Rl=1100, we have observed an increase of C0

(defined in the same way) from 2.5 to 3.5. We point out that in the absence
of an equivalent of the Kármán–Howarth relationship for the Lagrangian
time increments, a limit value of C0 is not a priori fixed. Dimensional
analysis yields DL

2 (y)=C0(Re) Ey and similarity arguments give C0(Re) Q
const. or C0(Re) Q Rea in the limit of infinite Reynolds numbers (in the
latter case, a is a critical exponent to be determined independently).
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Fig. 3. Second order structure function, normalized by the Kolmogorov scaling Ey, plotted
for three Reynolds numbers. Triangles corresponds to Rl=312 and a maximum C0 value
of 2.6. Squares: Rl=740 and C0=2.8. Stars: Rl=1100 and C0=3.2.

4. INTERMITTENCY AND SCALING

In order to further describe the statistics of the Lagrangian velocity
fluctuations, one must turn to higher order statistics of the velocity incre-
ments Dyv. Their PDF Py for y covering the accessible range of time scales
is shown in Fig. 4, where the variations have been normalized to unit
variance in order to emphasize changes in the functional forms. A first
observation is that the PDFs are symmetric about Dv=0, in agreement
with the local symmetries in this flow (there is no expected skewness in the
Lagrangian velocity fluctuations). At the smallest increment, the stretched
exponential shape is in agreement with measurements of the PDF of
Lagrangian acceleration at identical Reynolds numbers. (23) In our case, the
limit form of the PDF of the velocity increments is not as wide as that of
the acceleration because the Kolmogorov scale is not resolved. At large
time increments the PDFs become Gaussian, as in Eulerian statistics. In
between these extremes, the change is continuous, as the PDFs develop
stretched exponential tails as the time increments decrease.

The variation of the PDFs of velocity increments with scale is often
described in terms of the scaling of structure functions:

DL
q (y)=O|Dyv|qP ’ yz

L(q). (5)
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They are plotted in Fig. 5, for orders up to the sixth (this limit being due to
the number of experimental data point available, ’ 106). The extend of the
inertial range is too small to observe a true scaling region in the DL

q (y)
plots—Fig. 5(a).

We thus estimate the scaling exponents using the ESS ansatz that has
become classical in the analysis of the Eulerian structure function. (24) In
Lagrangian coordinates, one has to use the second order structure function
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as a reference, because dimensional analysis show that it is that moment of
the velocity increments which varies linearly on the energy transfer E (as the
third order structure function DE

3 in Eulerian coordinates). In this case one
observes a relative scaling—cf. Fig. 5(b)

DL
q (y) 3 [DL

2 (y)]t
L(q). (6)

In the dissipative region, the exponents tL(q) have the trivial scaling
tL(q)=q/2. However, in the inertial range, one observes a clear scaling
with a different exponent that varies non-linearly with the order of the
structure function—the values of the relative scaling exponents for three
differents turbulent Reynolds numbers are reported in Table II. If one
expands the resulting intermittency spectrum to quadratic order, one
obtains a very good fit for the above data for the range of investigated
values of Rl, with a quadratic expansion:

tL(q)=(1/2+l2
L) q − l2

Lq2/2 with l2
L=0.115 ± 0.01. (7)

(We emphasize that we do not assume a lognormal model for tL(q), but
simply that a higher order expansion of the intermittency spectrum would
be meaningless with the statistics reported here). The value of the Lagrangian
intermittency parameter l2

L is significantly larger than the one generally
observed in the Eulerian statistics. Indeed, experimental and numerical
observations (26) in Eulerian coordinates are well represented by the follow-
ing quadratic spectrum:

tE(q)=(1/3+3
2 l2

E) q − l2
E q2/2 with l2

E=0.025. (8)

The fact that intermittency may be more pronounced in Lagrangian
coordinates has been originally remarked by Borgas. (27) We give hereafter
a similar argument to relate Eulerian and Lagrangian statistics, after a

Table II. Value of the Lagrangian Relative Structure Function Exponents, for Three

Different Turbulent Reynolds Numbers (Rl, Based on the Taylor Microscale)

Rl 310 740 1100 error

t1 0.56 0.56 0.56 ± 0.01
t2 1 1 1
t3 1.32 1.33 1.34 ± 0.02
t4 1.54 1.56 1.58 ± 0.06
t5 1.68 1.73 1.76 ± 0.1
t6 1.8 1.8 1.9 ± 0.1
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remark by B. Castaing. (28) It relies on the Kolmogorov–Obukhov 1962
idea (29, 30) that intermittency is related to the non-uniformity of energy
transfer. In Eulerian coordinates one writes:

DE
q (a) 3 OEq/3

a P a
q/3 3 a

a E(q/3)
a

q/3, (9)

so that the Eulerian velocity intermittency exponents zE(q) are related to
the energy transfer exponents through:

zE(q)=aE(q/3)+q/3. (10)

Similarly on writes in Lagrangian coordinates:

DL
q (y) 3 OEq/2

y P a
q/2 3 ya L(q/2)yq/2, (11)

so that

zL(q)=aL(q/2)+q/2. (12)

The two statistics are related when the coarse-grained energy transfer Ey is
interpreted in the framework of a Richardson cascade: a statistical time
increment of duration y corresponds to eddies size a, such that a

2 3 y3. On
then has:

aL(q)=3
2 aE(q). (13)

The intermitency coefficient l2 can then be estimated from the scaling of
the flatness function. This yields:

l2
E=−

“ log(ODau4P/ODau2P2)
“ log a

=2aE(2/3) − aE(4/3), (14)

l2
L=−

“ log(ODyv4P/ODyv2P2)
“ log y

=2aL(1) − aL(2), (15)

so that:

l2
L

l2
E

=
2aL(1) − aL(2)

2aE(2/3) − aE(4/3)
=

3aE(1) − 3aE(2)/2
2aE(2/3) − aE(4/3)

=13
2
23

. (16)

Using pure Kolmogorov–Richardson arguments, on finds that the inter-
mittency coefficient should be at least 3.4 times larger in the Lagrangian
domain than the Eulerian one.
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5. INTERMITTENCY AND DYNAMICS

5.1. Experimental Observations

Intermittency is thus observed and quantified in both Lagrangian and
Eulerian frameworks. In contrast to traditionnal Eulerian studies where
intermittency is described in terms of multiplicative processes, we look here
for a dynamical origin. We consider the statistics of the fluid particles
fluctuating velocity in analogy with a random walk. We write a velocity
increment over a time lag y as the sum of contributions over very short
time increments y1:

Dyv(t)=v(t+y) − v(t)= C
y/y1

n=1
Dy1

v(t+ny1). (17)

If the incremental ‘‘steps’’ of duration y1 were independent (and identically
distributed), the PDF Py(Dv) would readily be obtained as a convolution
of the elementary distribution at scale y1, Py1

(Dv)—plus an eventual con-
volution kernel to account for stationarity at large scales. Such a regular
convolution process corresponds to the Kolmogorov K41 picture of tur-
bulence; (1) the particle velocity fluctuations are Brownian and the scaling is
monofractal.

Therefore if a multifractal behavior is to be observed, one should
either have non-integrable acceleration fluctuations or the presence of
long-range correlations in the dynamics, or both. The measurements of
Bodenschatz’ group (13, 23) regarding the Lagrangian accelerations have
shown that the former possibility must be ruled out, so that correlations
must exist in the Lagrangian dynamics. To demonstrate it, we plot in Fig. 6
the time correlation of the elementary velocity increments; normalized
correlation coefficients q(f, g)(Dt)=O(f(t+Dt) −OfP)(g(t) −OgP)P/sfsg

are being computed both for signed velocity increments (f, g(t)=Dy1
v(t))

and for their amplitude (f, g(t)=|Dy1
v(t)|). First, one observes that the

auto-correlation of the signed increments, Dy1
v(t), decays very rapidly: the

correlation coefficient drops under 0.05 for time separations larger than 5y1.
However, if one considers the amplitude (i.e., the modulus) of the ‘‘steps’’
(|Dy1

v(t)|), one finds that the auto-correlation decays very slowly and only
vanishes at the largest time scales of the turbulent motion. Recast in terms
of the random walk, our results show that the amplitudes of the ‘‘steps’’
are long-range correlated in time although their directions are not. As
this point is fundamental for our approach, we have verified it using a
Lagrangian tracking algorithm in a Direct Numerical Simulation (DNS)
of the Navier–Stokes equations, using a pseudo-spectral solver, at Ra=75,
and for the same ratio y1/TL—see inset of Fig. 6. The results are in
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remarkable agreement with our measurements. All increments are corre-
lated for Dt < y1, the time over which they are computed. Above y1, the
correlation of the signed increments rapidly drops while the correlation
coefficient of their absolute values decays very slowly, to vanish only for
Dt > 3TL. This behavior is observed for y1 chosen from the smallest
resolved time scales to inertial range values.

In order to proceed further, one needs to determine the functionnal
form of these long range correlations of the magnitude of Lagrangian
velocity increments. It turns out that a linear behavior is observed if one
plots the variation of the connected magnitude of the increments as a
function of their logarithmic separation in time:

qLM(Dt)=
O(log |Dy1

vx |(t) −Olog |Dy1
vx |P)(log |Dy1

vx |(t+Dt) −Olog |Dy1
vx |P)P

O(log |Dy1
vx |(t) −Olog |Dy1

vx |P)2P

3 −log 1Dt
TL

2 . (18)
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The proportionality coefficient, as we will show in the next section, is the
intermittency parameter l2, as defined in Eq. (7).

5.2. A Multifractal Random Walk Model

Our observations of long time-correlations in the magnitude of ele-
mentary velocity increments also persist in the limit of very small time
increments, and thus presumably for the acceleration of the fluid particle
and thus for the forces acting on it. Theoretically, one would like to
understand this behavior from the hydrodynamic forces in the Navier–
Stokes equations. Such a direct analytical treatment is out of reach at
present. However, in the Eulerian framework, work on the Kraichnan
model (3) has shown that intermittency can be traced back to model equa-
tions. For the Lagrangian problem considered here, we develop a similar
approach and, as a first step, we propose a model dynamical equation of
the Langevin type x: to describe the velocity fluctuations of a fluid particle.
Stochastic modelling of Lagrangian velocity fluctuation has indeed long
been used in turbulence. (18) It is justified because one aims at understanding
the statistical properties of the Lagrangian motion of fluid particles. In
addtition, the Langevin approach has long proven an unvaluable tool of
statistical mechanics.

In this procedure, one considers a one-dimensional variable, W(t),
representing the particle velocity, driven by a stochastic force. If this force
is chosen as a white noise then W(t) has the dynamics of Brownian motion:
its statistics is monofractal with a similarity exponent equal to 1/2—the
increments scale as O|W(t+y) − W(t)|pPt ’ yp/2, corresponding to the non-
intermittent Kolmogorov 1941 picture. In order to account for intermit-
tency, one needs to ascribe other properties to the stochastic force. Guided
by our experimental results, we build a stochastic force having a random
direction and a long-range correlation in its magnitude. Specifically, its
direction is modeled by a Gaussian variable G(t), chosen white in time,
with zero mean and unit variance. The amplitude of the force, A(t), being a
positive variable, is written A(t)=exp[w(t)] where the magnitude w(t) is a
stochastic process that satisfies:

Ow(t) w(t+Dt)Pt=−l2 ln(Dt/TL) for Dt < TL, (19)

and 0 otherwise—l2 being an adjustable parameter. When discretized, this
dynamics corresponds to a one-dimensional Multifractal Random Walk
(MRW). (31) Analytical calculations show that the resulting dynamical
variable W(t) has multi-scaling properties. The moments have scaling laws,
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O|DyW|qP ’ yz(q), with z(q)=(1/2+l2) q − l2q2/2, so that l2 in Eq. (19) is
the intermittency parameter of the model. (31) It is a fundamental point that
the same parameter l2 governs both the evolution of the PDFs of the
increments (one-time statistics) and the time correlation of the process (two-
time statistics).

We show that this model captures the essential features of the
Lagrangian data. First, in order to test the relevance of Eq. (19), we have
computed, from experimental and numerical data, the auto-correlation
function of the logarithm of the amplitude of infinitesimal Lagrangian
velocity increments, qLM(Dt). As shown by the line with filled circles in
Fig. 7, the agreement between the model and the observations is excellent.
It yields an estimate of the intermittency parameter l2=0.115 ± 0.01.

In order to show the relevance of the model for the description of the
one-time statistics of the Lagrangian increments Dyv, we first note—Fig. 4,
upper curve— that the choice l2=0.115 yields a PDF for the stochastic
force that is in remarquable agreement with experimental measurements of
fluid particle accelerations. Indeed in Fig. 4, the crosses are derived from
the force in the MRW model whereas the continuous curve corresponds to
the measurement of La Porta et al. (23) in a similar flow at a comparable
Reynolds number. The agreement at larger time scales is evidenced on the
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Fig. 7. Correlation in time of the magnitude of one component of the velocity increments,
qLM(Dt), computed as in Eq. (18), for a time lag y1=0.03TL. Squares, experimental measure-
ment; triangles, numerical simulation; and circles (filled), MRW model developped below.
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predictions of the MRW model (filled circles). (a) and (b): first and second order cumulants,
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behavior of the first two cumulants. Cumulants are computed with more
reliability that the moments and are related to them through:

O|Dyv|qP=Oexp(q ln |Dyv|)P=exp 1C
n

Cn(y) qn/n!2 . (20)

In the MRW model, one can analytically derive: (31)

C1(y)=(1/2+l2) ln(y), C2(y)=−l2 ln(y), (21)

all higher order cumulants being null (the MRW model is thus an effective
log-normal model of turbulence (25)). The cumulants C1(y) and C2(y) com-
puted from the experimental and numerical data are shown in Fig. 8 and
compared to MRW model predictions when the intermittency parameter is
set to the value l2=0.115 which is derived from the correlations in the
dynamics (Fig. 6). One observes that in each case the agreement is
excellent; the slope of the variation “C1, 2(y)/“ ln y in the inertial range is
correctly given by Eq. (21). The same intermittency parameter thus governs
the anomalous scaling of the Lagrangian velocity increments and their long-
time dynamical correlations.

6. CONCLUDING REMARKS

Long-time correlations in the Lagrangian dynamics are found to be a
key feature for the understanding of intermittency, which leads to a new
dynamical picture of turbulence. Long-time correlations and the occurrence
of very large fluctuations at small-scales dominate the motion of a fluid
particle. It can be understood if, along its trajectory, the particle encounters
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very intense small-scale structures (vortices and stagnation points) over a
more quiet background. Intermittency is then due to the nature and distri-
bution of these small scale structures. Indeed, the analogy with a random
walk suggests that the statistics at all scales can be recovered if one ascribes
two properties to the small scales: (1) the probability density function of
fluid particle accelerations, and (2) the functional form of their time corre-
lations. In the Lagrangian framework, these features are directly linked to
the Navier–Stokes equations that govern the elementary changes in the
velocity (momentum) of the fluid particles. It thus gives a possibility to
derive intermittency from the constitutive physical equations. Although this
may be quite a theoretical challenge, direct numerical simulations look
promising as they allow the study of the flow dynamical fields (pressure,
velocity gradient tensor, etc.) along the trajectory of individual fluid
particles.
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